
ORIGINAL PAGE IS
OF POOR QUALTf

N89 - 1986 7

CAD-Model-Based Vision
for Space Applications

Linda G. Shapiro

Department of Electrical Engineering, FT-10
University of Washington

Seattle, WA 98195
USA

ABSTRA CT

A pose acquisition system operating in
space must be able to perform well in a variety
of different applications including automated
guidance and inspections tasks with many
different, but known objects. Since the space
station is being designed with automation in
mind, there will be CAD models of all the
objects, including the station itself. The goal
of our work is to construct vision models
and procedures directly from the CAD mod-
els. The system we are designing and imple-
menting must convert CAD models to vision
models, predict visible features from a given
view point from the vision models, construct
view classes representing views of the object,
and use the view class model thus derived to
rapidly determine the pose of the object from
single images and/or stereo pairs.

Keywords: matching, view class, CAD model, relational
pyramid

1. Introduction

CAD systems are increasingly becoming an integral
component of the manufacturing process in the factories and
plants of the United States. Parts can be designed inter-
actively and then automatically machined from the newly
created models. As part of the automation process, some
manufacturers are buying machine vision systems to inspect
the machined parts and to provide the three-dimensional
guidance for robots that handle the parts. Currently, most
of these systems have to be reprogrammed to recognize
each new part; this can involve weeks or months of effort,
depending on the task. Since many manufacturers have the
CAD models of the parts, the most desirable approach is
to produce the vision algorithms directly from the CAD

This research was supported by the National Aeronautics
and Space Administration (NASA) through a subcontract
from Machine Vision International.

models. This approach has already been recognized as
important, and some preliminary work in the area has been
done. Examples include the work of Henderson and Bhanu
at The University of Utah (Henderson et al., 1986) and that
of Ikeuchi at Carnegie-Mellon (Ikeuchi, 1987). One area
where vision systems based on CAD models is becoming
important is in the United States space program. Since the
space station and space vehicles are recent or even current
designs, we can expect to have CAD models of these objects
to work with. Vision tasks in space such as docking and
tracking of vehicles, guided assembly tasks, and inspection
of the space station itself for cracks and other problems can
rely on model-directed vision techniques.

We are building a computer vision system that uses
CAD models and other knowledge about the objects it will
view to generate vision models and vision algorithms. The
system has two major subsystems: one for offline processing
and one for online processing. The offline processing sub-
system will handle the task of converting each of the CAD
models, which were meant to be used for design and display
of objects, to a vision model and a procedure that can be
used to recognize, inspect, or manipulate the object. The
online processing will use the vision model and procedure
to perform the inspection/guidance task.

CAD models range from the standard three-view, ortho-
graphic engineering drawings to the more recent construc-
tive solid geometry (CSG) and boundary models produced
by solid modeling systems. Since there are algorithms for
converting three views to solid models, we will not consider
the three view representation, but are working with solid
modeling systems. The purpose of most solid modeling
systems is to provide an interactive environment in which
an engineer can design a part, with procedures by which he
or she can display the part in different orientations. A few
systems also produce the specifications for the automatic
machining of the part. None of these representations is
suitable to be directly used by a machine vision system.

A machine vision system needs a model of a part that
specifies the features by which it can be recognized from
one or more images. The features that will show up and
can be extracted from an image are dependent on the

361

, PRECEDiNG PAGE BLANK NOT FiLMED

view, the material of the objcct, and the lighting setup.
Machine vision coinpanics t Iiat sell software to customers
for particular inspection or guidance applications typically
have programmers and engirirrrs who spend months dcvcl-
oping the best lighting and optics and the algorithms for
determining the exact pose of the part and then performing
the inspection or guidance task. All of the knowledge and
experience of thcse people is missing in the bare CAD mod-
els. Thus the offline system must contain enough knowledge
of lighting and materials and the physics of imaging, that it
can perform the same task automatically and reliably.

In our overall design, the input to the offline system
consists of 1) the CAD model from the geometric modeling
system, 2) a knowledge base of information on materials,
lighting, and imaging, in a rule-based form, and 3) the
specifications for the particular task to be performed. The
offline system will transform this information into a vision
model and a procedure for that task, to be used by the online
system. This paper deals with the vision models being
produced and the matching algorithms that will use these
models. The topics to be discussed include 1) prediction of
images features from object models, 2) representation of the
features predicted for a given view and their interrelation-
ships, 3) generation of viewing clusters, and 4) matchine.
a n unknown view to the representatives of the view classes
derived from the clustering.

2. Predicting Image Features from Object
Models

Prediction of image features from object models is
important in determining the machine vision algorithms
that will detect and extract the features and match to
stored models. Ikeuchi (1987) has included prediction in his
system that matches range data derived from photometric
stereo. Ponce and Chelberg (1987) have worked out the
mathematics for predicting the appearance of limbs and
cusps of generalized cylinders. We have chosen to work
with standard geometric modeling systems of the type used
in computer aided design of industrial parts in order to
be most compatible with current and potential industrial
applications.

There are two major ways of representing three-
dimensional objects in todays geometric modeling systems.
Constructive solid geometry (CSG) models are built from
primitive solids such as spheres, ellipsoids, cylinders, rect-
angular parallelepipeds, and cones. The primitive solids are
combined using operations of union, intersection, and set
difference to produce a binary tree structure that represents
the object. The idea is conceptually simple and easy for
a designer t o learn. Furthermore, the objects produced
are guaranteed to be physically possible three-dimensional
objects. T h e tree structures can be used to generate wire
frame drawings of the object or, with the use of a ray

casting procedure, gray tone and color images of different
views with different lightings. Boundary models represent
an object by its surfaces and edges. They are more difficult
to use for construction of an object, but potentially more
flexible, since the surfaces and edges may be represented
by B-splines, allowing much more generality. It is possible
to construct a boundary representation (BREP) that does
not correspond to any physically possible object. Boundary
models can also be used to generate wire frame, gray tone,
or color images.

We are using three different systems in our present
work. The first system, Renaissance, is a n experimental
CSG modeller being developed by Tony DeRose of the Com-
puter Science Department a t the University of Washington.
This system accepts CSG input and applies ray casting
to produce shaded images. It allows spheres, ellipsoids,
cylinders with spherical or ellipsoidal faces, rectangular
parallelepipeds, cones, and half planes as primitives. I t
also allows the user to specify the reflectivity of the surface
material and to include any number of point light sources
a t different positions and with different intensities. Ongoing
research on this system is producing the ability to specify
areal light sources of various shapes that are more realistic
than the point light sources. We are using this system
mainly to generate artificial images for display and for image
processing.

The second system we are using is PADL-2 (Voelcker
and Requicha, 1977) which was developed a t Rochester and
is now being distributed by Cornell University. PADL-2
is a CSG system, but has the ability to convert the CSG
models to BREP. Since vision systems deal with surfaces
and edges, this converstion is essential to our work. PADL-2
allows spheres, cylinders, rectangular parallelepipeds, cones,
wedges, and tori as primitives, and it does not have as much
flexibility as WART in selection of lighting. We are mainly
using it for fast wire frame drawings of the objects and for
the conversion to BREP.

The third system we are using is CATIA, a joint venture
of IBM and Dassault. CATIA can produces a BREP
with not only simple surfaces and curves, but also B-spline
surfaces and curves. Although we cannot access the CATIA
system ourselves, we will be given data from that system
via IGES format tapes.

The prediction work consists of extracting data from
various geometric modeling systems, storing it in a three-
dimensional vision model of our own design, and using the
vision model to predict the features that will appear in
images. T h e extraction process is merely a programming
task, made difficult or easy by the particular system from
which the data must come. The vision model we are
currently using is $how in Figure 1 . It is a variation of the
hierarchical, relational structure we designed for collision
avoidance and matching several years ago (Shapiro and
Haralick, 1984). T h e basic data structures employed are
the relational data structure, which represents entities, and

362

ORIGINAL PAGE is
the relnfzon, which represents attributes of and relati&fiifiOOR QukLJzf

' i l among entitirs. A relational data structure is a set of
named relations. Each relation is a set of N-tuples for
some positivr integer N . The components of an N-tuple may
be atomic or may themsclves be relational data structures.
Each relational data structure has one distinguished relation
called the attribute-value table. The attribute-value table
stores the values associated with global attributes of the
entity represented by the relational data structure. The
other relations often depict thc relationships among the
primitive pieces of the entity.

The entities shown in Figure 1 are the world, the object,
the face, the boundary, the simple arc, the compound arc,
the simple surface and the compound surface. The world
is made up of objects. The Objects Relation, which is a
part of the World Relational Data Structure, is a list of
the objects in the world. Each object in the list has a
name, a type, a pointer or reference to the relational data
structure for that object, and a transformation that can
be applied to the points of the object to position it in the
world. The attribute-value table of the world contains global
information about the world, including, but not limited to
the bounding box shown in the figure. An object has a set of
faces and two important relations that embody the topology
of the object. The Edge/Surface Topology Relation is a list
of the three-dimensional (and possibly curved) edges of the
object. Each edge in this relation is associated with its
two endpoints, the faces to its left and right, the arcs that
represent the edge in the boundaries of the two faces, and
the angle between the two faces (or an approximation if
they are not planar). The Vertex Relation is a list of three-
dimensional vertices. Each vertex has associated a name,
a location, a list of edges that meet a t that vertex, and a
transformation.

Conceptually, a face has a surface equation or equations
and a set of boundaries that tell what portions of the surface
actually belong to the face. These boundaries are listed in
the Boundaries Relation, and the surface is referenced as the
value of the Surface attribute in the attribute-value table
of the face. This is consistent, because the face has only
one surface, but it has a set of boundaries. Each boundary
is a list of arcs, which can be simple (represented by an
equation) or compound (represented by a Compound Arc
Relational Data Structure which itself has an Arcs Relation
or list of arcs). Similarly, surfaces are either simple surfaces
or Compound Surface Relational Data Structures. At all
levels of the structure, entities have associated transforma-
tions and bounding boxes.

We h a w used data structures of this general form
for model-based vision system and geographic informa-
tion systems and have found them to be very flexible and
very natural representations of complex structures. The
particular variant discussed here stores all the information
usually found in any BREP plus the topological information
that can help generate constraints for matching in a vision

w I \ I I

' I

-m

Figure 1 illustrates the relational data structure for
a three-dimensional vision model.

system. Later in the work, inspection specifications and
other attributes will be added to the models.

Given a relational data structure representing a three-
dimensional object, the goal of the prediction module is
to predict the features of that object that will appear
in an image of the object from a given viewpoint and
wit4 a given set of light sources. Visible features can
consist of edges between separate surfaces of the object,
limbs (loci of points where the line of sight is tangent
to the surface), corners, holes, imprinted characters, and
anything else we might be able to detect with low- and
mid-level vision algorithms. Our initial system will predict
edges and limbs that should appear in an image of the
object from a particular viewpoint and independent of the
lighting. The result will be similar to a wire-frame rendering
of the object, and the algorithms used will be variations
of standard hidden line/hidden surface algorithms used
to produce wire-frames. The main difference will be the
maintenance of the relationships between the predicted two-
dimensional structures and the three-dimensional entities
which produced them. This information will be used later

363
ORIGINAL PAGE IS
OF POOR QUALITY

in the pose estimation procedures.
We are currently beginning the implementation of this

part of the system. We have derived the equations of the
limbs for the simple CSG primitives (ellipsoid, cylinder, and
cone) in closed form. Yet to be derived are the equations
and procedures for working with B-spline data. The next
step is t o investigate and characterize the reasons that an
edge or a limb may not show up in a n image a t all. Not
enough contrast between two surfaces due to illumination or
even the color and patterns of the surfaces and not enough
difference in the orientations of the two surfaces are some
of the possible causes.

3. Representation of Features

The prediction system will generate the features that
appear in a given view, and those views that produce similar
features will be grouped together as one viewing cluster.
In order t o decide if two views are similar enough to be
grouped together, we need a representation for the features
and their interrelationships. This representation should be
simple enough that the primitive features can be easily
accessed and complicated enough that powerful high-level
relationships can be represented. This suggests a pyramid
structure where simple primitives are represented a t the
bottom level, and the succeeding levels represent more and
more complex relationships among the primitives. Thus the
view depicted by this structure can be dealt with a t any level
of complexity desired. The structure is formally defined as
follows.

Let F be a set of detectable primitive features. Each
feature f E F has an associated type T f and a vector
of attributes A,. A relational pyramid of height h over
feature set F is a sequence of h relational descriptions
(Do, D1,. . . , Dh-1). Description Do is a sequence of no re-
lations < @, . . . , R:o >, each relation representing one of
the primitive types. A pair (f, A f) belongs to relation RP if
f E F is a primitive feature of the type represented by R:
and A, is its vector of attributes. Intuitively, a t level 0 of
the relational pyramid, each feature is associated with its
attributes and is classified as one of several different legal
types.

Description D1 is a sequence of relations < R!, . . . , R,!,, >
where each relation Rf represents a relationship among
two or more of the level-0 primitives. An attributed
tuple of one of these level-1 relations Rf has the form
((NI, t l) , . . . , (N, , t,), A) where each N, is the name of a rela-
tion Rk, at level 0, and the corresponding t , is a tuple of RL,.
The semantics of ((Nl,t l) , . . . , (iVn,tn),A) E Rf is that the
level-0 attributed primitives (t l , . . . , tn) which are of types
(N 1 , . . . , Nn), are related according t o the level-1 relation-
ship R:, and this level-I relationship has attribute vector A.
This idea can then be extended up the pyramid. At level k,
description D1: is a sequence of relations < Rf, ..., REk >,

where each relation represents a rclationship among two
or more of the entitities from level 0 to level k - 1. (In the
strictest kind of pyramid, they would all he from level k-1.)
An attributed tuple of such a level-k relation Rt; has the
form ((N1,tl) ,..., (N,,t,),A) where each N, is the name
of a relation R$, a t a previous level k' and t , E R$, for
j = 1, . . . ,n. T h e semantics of ((N l , t I) , . . . , (N , , t ,) , A) E R:
is that the attributed primitives (t l , . . . , tn) which come from
levels 0 to k-1 and which are of relational types (N1,. . . , N ,)
are related according to the level-k relationship Rf and this
level-k relationship has attribute vector A .

Thus the relational pyramid structure allows us to define
an object by its attributed primitives, relationships among
those primitives, relationships among those relationships,
and so on up to some predefined maximal level. It is
a hierarchical, relational structure, but the hierarchy is
defined on relationships instead of on larger and larger pieces
of the object. Having formally defined the structure, we will
now show how it can be used to describe a view or a view
class of a three-dimensional object.

The level-0 primitives in our current system are straight
and curved line segments. Thus in our formalism, Do = <
straightsegments, curvedsegments > . The attribute vector
for a straight line segment contains its starting point and
its ending point, and the attribute vector for a curved
line segment contains its starting point, its ending point,
and an interior point which is used in later calculations of
relationships.

The level-I relations represent junctions where two or
three segments meet. (This will later be extended to multi-
segment junctions.) For junctions where only straight lines
meet, we use the standard junction types FORK, ARROW,
T, and L. Because we wish to distinguish between the
separate lines of each junction, we define a numbering
scheme that selects the first line in each junction as the
one closest to vertical and then numbers the remaining lines
consecutively in clockwise order.

For junctions including a t least one curved line, we chose
to define a new labeling scheme that helps us to build
up relations a t the next level of the pyramid. (For a n
alternate labeling scheme for junction with curves, where
junction types represent 3D information rather than just
2D configurations, see Chakravarty (1979).) In our current
scheme, a curved segment is considered concave (A) or
convex (V) depending on the way it faces the segment
previous to it in a clockwise ordering of the segments. (Since
our curve segments come from spheres, cylinders, and cones,
they will not have inflection points.) The first segment in a
junction with a straight line segment and one or two curved
line segments is defined to be the straight line segment. The
first segment in a junction with two straight line segments
and one curved line segment is the straight line segment
counterclockwise from the curved segment. If there are no
straight lines, the curved segment whose chord joining its
s tar t and end points is closest t o vertical will be considered

the first segment. T h e label of a junction then dcpcntls
on the labels of the two or three segments comprising it,
in the ordering in which they are numhered. For example,
LA is the label of a junction where a straight line segmont
connects to a concave curve segment, while LAV is the
label of a junction where a straight line segment is followed
(in clockwise order) by a concave curve segment which is
followed by a convex curve segment.

The relations currently implemented a t level 1 of the
pyramid represent each of the junction types just described.
The LOOP relation, which is also being implemented, con-
sists of sets of segments that together form a minimal closed
boundary. Other feasible level-1 relations for view classes
would be parallel line segments, colinear line segments, and
such spatial relations as above, below, left-of, and right-of
(when they are invariant for all views in a view class).

The level-2 relations use level-1 tuples representing at-
tributed junctions and loops and level-0 tuples representing
line and curve segments as their primitives. The relations
currently being implemented a t level 2 are PARALLEL,
ANTIPARALLEL, REVERSE, COLINEAR, ADJACENT,
and INSIDE. Because these relations are being defined on
junctions rather than on line segments, they have special
definitions.

The PARALLEL relation consists of attributed sets
of parallel junctions. Two straight line junctions J1 =
(1 1 , 1 2 , . . .,In) and Jz = (l ; , l;, . . . , Pm), n 5 m, are parallel if
there is a n order preserving injection f : J1 - J2 satisfying
parallel(Zi, f (l i)) , i = 1,. . . , n. Two arbitrary junctions
J 1 = (1 1 , 1 2 , . . . , In) and Jz = (l i , 14,. . . , lh) are parallel if the
nonempty subsequences IC1 c J l and IC, E Jz consisting of
only the straight lines are parallel, where the number of
straight lines is greater than one.

While two ARROW junctions may be parallel, it is
impossible for a FORK junction and a n ARROW junc-
tion to be parallel, since one line segment of the FORK
will point in the opposite direction as the corresponding
line segment of the ARROW. Yet this relationship is also
important in describing the line drawing as a whole. For
this reason, we define the ANTIPARALLEL and REVERSE
relations as follows. Two straight line junctions J1 and
J 2 are antiparaIle1 if there is a function f : J1 + Jz
satisfying parallel(&, f (l i)) or antiparallel(&, f (1 i)) . Two
straight line junctions are reverse if they are antiparallel
and if antiparallel(li,f(li)) is true for exactly one pair of
corresponding segments. Two junctions are antiparallel (or
reverse) if the nonempty subsequences consisting of only
straight lines and consisting of a t least two straight lines
are antiparallel (or reverse). In our implementation, the
REVERSE relation corresponds to this definition of reverse,
and the ANTIPARALLEL relation corresponds to pairs of
junctions that are antiparallel, but not reverse.

The COLINEAR relation consists of attributed sets of
colinear junctions. Two junctions are considered colinear if

tlicy arc parallel, antiparallrl, or rcverse and there is one
pair of corresponding ctlgcs which satisfy t,he same linear
equation. The AD.JACI:N‘T rcla.t.ion consisk of pairs of
junctions which are directly conncctetl t,o each other by
a common scgmrnt. If ahovc, I)clow,]&of, and right-
of are invariant across a. view class, thcse can be used as
attributes to the adjacency of t l i c junctions. Finally the
INSIDE relation consists of a level-0 primitive and a level-
1 loop, where the primitive lies inside the loop. Figure
2 illustrates these concepts for one view class of a three-
dimensional object .

Figure 2a illustrates the line drawing representing
a view class of a machined part object.

4. Constructing Viewing Clusters

A view class model of a n object consists of a set of
characteristic views of that object, represented by a suitable
data structure. In his range-data-oriented system, Ikeuchi’s
view classes are the aspects of the object. Two views are
part of the same view class if all the same surfaces a re
visible in each of them. While this is a very reasonable
approach for range data , where segmentation into surfaces
is relatively easy, it is not reasonable for intensity images of
complex parts, where it may be very difficult to accurately
segment into individual surfaces. Korn and Dyer suggested
that the view classes could be constructed by considering a
large number of views around a tesselated Gaussian sphere
and grouping together those that share some property. T h e
important question here is what that property might be.

The most reliable features that can be automatically
extracted from intensity images are still line segments: both
straight and curved. If we apply Ikeuchi’s thinking to Korn
and Dyer’s suggestions, we would say that two views belong
to the same cluster if the same line segments are visible in
both. But, even under conditions where background and
lighting are carefully controlled, one can still expect some
missing or extra line segments due t o effects of illumination
and other environmental factors. Thus two line drawings of
an object, taken from approximately the same viewpoint,
may be a little bit different. Furthermore, there may be a
set of viewpoints which all produce similar, but not identical
line drawings, and which we would like to group together _ . -

in order to control the number of view classes. All of this
ORIGINAL PAGE

365 OF POOR Q U A F W

I lL LOI.IAmrow l o l l
IIAnow 12) ILV LCOll
IlLV L W I . I U V LC41I
I IUV .LC4) lUL.LCSI1
I IUL .LC5 I IL LON
I(LV.LCOI 1UV.LCI I I
(I U V LCO (UL.LC21I
I IUL.LC2I. lLV LC31

LEVEL 1:

Figure 2b illustrates the pyramid structure for
the view class shown in Figure 2a with attribute
information suppressed for simplicity.

suggests that two views belong in the same view class if
their relational distance (Shapiro and Haralick, 1985) is
similar enough. Thus finding view classes consists of finding
relational distances between pairs of pyramid structures
representing view points selected from a tesselated Gaus-
sian sphere and clustering them, based on these relational
distances. This is all part of the offline processing of the
object.

5. Matching Unknown Views to View
Class Descriptions

When an image is taken of a known 3D object from an
unknown view, the first step before inspection or guidance
is to determine the pose (position and orientation) of the
object. To achieve this with a view class model, the vision
system must first determine the correct view class, find the
correspondences between the features extracted from the
image and those in the view class representation, use the

links between 3D features and view class features to find the
correspondence between extracted features and 3D features,
and use this correspondence to find the pose of the object.

It is desirable to determine the correct view class its

rapidly as possible. Chakravarty and Freeman (1982) rep-
resented a view class by a vector containing the number of
junctions of each junction type. They used the values in
the vector to select the best view class, relying especially on
the most frequent junction type. We feel that this approach,
while simple and rapid, will not work very well when some of
the segments do not show up in the image, causing missing
or erroneous junction types, or when extra segments appear
in the image. Ikeuchi (1987), using range data, created
an interpretation tree during his offline processing phase.
The interpretation tree was a decision tree used to select
the best view class, depending on the values of various
measurements. We will consider this approach in the future,
but initially, we are trying a simple idea based on the Hough
transform, which we consider promising.

Suppose each view class is represented by a rela-
tional pyramid structure. For each relational pyramid, we
can easily derive a s u m m a r y p y r a m i d structure. Where
the relational pyramid has a relation R with c tuples

summary pyramid has a corresponding relation R with a
single tuple ((Nl, N,, . . . ,N,,), c) representing those c tuples.
For example, if the parallel relation has 4 tuples of the form
((F O R K , f) , (ARROW,a)) , then the parallel summary re-
lation has one tuple ((FORI f ,ARROW) ,4) . This is done
for each relation and a t each level of the pyramid. At level
0, the summary is just the count c of how many primitive
features there are of each type. Figure 3 illustrates the
summary structure for the relational pyramid of Figure 2b.
Note that we have simplified the level-1 summary structures
for readability. The names of these level-1 relations actually
indicate the types of the primitives.

Along with the original relational pyramid structures
and the summary structures, the online system requires one
more structure to be produced by the offline system: the
i d e s structure. The index allows direct access, given a
summary tuple of the form ((N l , N 2 , . . . , N n) , c) l to a list
of all view classes that have this tuple in their summary
structures. It keeps an evidence accumulator for each view
class, initialized to zero. For exact matching, the online
system would traverse the summary structure derived from
the unknown view, and for each tuple in the summary
structure, it would add one to the accumulators of all the
view classes on the list attached to that tuple in the index.
The view class or classes with maximal evidence would be
selected.

Exact matching will produce erroneous results, due to
missing and extra segments. Our current solution is to
actually model the "erroneous" views associated with a view
class, producing a separate summary for each. We also
associate a probability with each perfect and each erroneous

{((NI 7 t ~ , ,) , (N , , t z , j) , . . ., (N n , tn,,)> A) I .i = 1, . . ., CI 1 the

366 ORIGINAL PAGE IS
OF POOR QUALIW

LEVEL 1
L O O I S LV1

2

F 0 . k A r r o w
3

LEVEL 0:
S I r a l g k l

3

L A Y UL L
2 2 3

C“,..d
6

Figure 3 illustrates a summary structure for the
relational pyramid of Figure 26.

view; the probabilities are now chosen by the experimenter,
but will eventually come from the prediction module. Using
the summary matching described above with the enlarged
set of summaries, we can select one or more view classes. A
Bayesian analysis will then tell us which is the most probable
view.

Once a view class has been selected, we must determine
the correspondence between the primitives of its relational
pyramid and those of the unknown view’s relational pyra-
mid. Since the relational pyramid structure is a highly
constrained, relational representation of a view class or view,
we expect that a backtracking tree search, using discrete
relaxation, will be able to rapidly find the best mapping
from view class structure to view structure. In particular,
the higher-level relations are expected to aid in efficient
pruning of the tree. Furthermore, it is not necessary t o
find a correspondence for every primitive feature of a view
class. We need only find enough correspondences to reliably
compute the pose of the object.

6 . Summary

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chakravarty, 1, “A Generalized Line and Junction La-
belling Scliemq with Application to Scenc Analysis”,
IEE‘E Transactions on Pattern Analysis and Macliine
Intelligence, Vol. PAMI-1, No. 2, 1979, pp. 202-205.

Chakravarty, I. and 13. Freeman, “Characteristic Views
as a Basis for Three-Dimensional Object Recognition”,
Proceedings of SPIE 336 (Robot Vision), 1982, pp. 37-
45.

Henderson, T., C. Hansen, A. Samal, C.C. 110, and
B. Bhanu, “CAGD-Based 3-D Visual Recognition”,
Proceedings of the Eighth International Conference on
Paftern Recognition, Paris, October 1986, pp. 230-232.

Ikeuchi, I<. “Generating an Interpretation Tree From a
CAD Model for 3D-Object Recognition in Bin-Picking
Tasks”, International Journal of Computer Vision,
1987, pp. 145-165.

Korn, M. and C. Dyer, “3-D Multiview Object Repre-
sentations for Model-Based Object Recognition”, Pat-
tern Recognition, Vol. 20, No. 1, 1987, pp. 91-103.

Ponce, J . and D. Chelberg, “Finding the Limbs and
Cusps of Generalized Cylinders”, International Journal
of Computer Vision, Vol. 1, No. 3, 1987, pp. 195-210.

Shapiro, L.G. and R. M. Haralick, “A Metric for Com-
paring Relational Descriptions”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-
7, No. 1, 1985, pp. 90-94.

Shapiro, L.G. and R. M. Haralick, “A Hierarchical Re-
lational Model for Automated Inspection Tasks”, First
IEEE Conference on Artificial Intelligence Applications,
Denver, Dec. 1984, pp. 207-210.

Voelker, H.B. and A. A. Requicha, “Geometric Model-
ing of Mechanical Par ts and Processes”, Computer, Vol.
10, No. 12, Dec. 1977, pp. 48-57.

We have described a system for pose acquisition. The
system consists of modules for predicting features that will
appear in 2D images from 3D models, clustering views into
view classes, and using the view classes to rapidly determine
the pose of the object. T h e system is currently being
implemented in the Intelligent Systems Laboratory a t the
University of Washington.

367

